Chapter 2 **Tools of Environmental Science** Section 1, Scientific Methods Day 1

The Experimental Method – Scientific Method

- Scientists make most of their discoveries using the _____
- This method consists of a series of steps that scientists worldwide use •

Observing

- is the process of obtaining information by using the senses as well as the
- information obtained by using the senses.
- Observing is the ______ step of the experimental method.
- Observations can take many forms, including •

Hypothesizing and Predicting

- _____ is a theory or explanation that is based on observations and that can A be tested.
- Forming a hypothesis is the ______ step of the experimental method.
- A hypothesis is not merely a guess.
- A good hypothesis should make

about the situation.

Hypothesizing and Predicting

- _____ are statements made in advance that express the results that will be obtained from testing a hypothesis if the hypothesis is supported.
- A prediction is used to _____

Hypothesizing and Predicting

- It is important that any hypothesis can be disproved.
- Every time a hypothesis is disproved, the number of possible explanations for an observation is
- By eliminating possible explanations, a scientist can zero in on the best explanation.

Experimenting

•

- _____ are procedures that are carried out under controlled conditions to discover. demonstrate, or test a fact, theory, or general truth.
- An experiment is performed when questions that arise from observations •

_____ with additional observations.

Experiments should be designed to pinpoint relationships.

Experimenting

- Good experiments have two essential characteristics: •
- The ______ is the factor that changes in an experiment in order to test a hypothesis.
- To test for one variable, scientists usually study ______ or situations at one time, with the variable being the only difference between the two groups.

Experimenting

- _____ is the group in the experiment that is identical to the control group The • except for one factor and is compared with controls group. is the group in the experiment that serves as a standard of
 - The

comparison with another group to which the control group is identical except for one factor.

Organizing and Analyzing Data

- _____ is any pieces of information acquired through observation or experimentation.
- Organizing data into ______ helps scientists analyze the data and explain the data clearly to others.
- Graphs are used by scientists to display relationships or trends in the data.

Organizing and Analyzing Data

Bar graphs are useful for comparing the data for several things in one graph.

Organizing and Analyzing Data

• Graphing the information makes the trends presented in tables easier to see.

Drawing Conclusions

• Scientists determine the results of their experiment by

_____ of their experiments with their

prediction.

• Ideally, this comparison provides the scientist with an obvious conclusion.

Drawing Conclusions

- However, often the conclusion is not obvious.
 - In these cases, scientists often use ______ to help them determine whether
 - the differences are meaningful or are just a coincidence.

Repeating Experiments

- Scientists often repeat their experiments.
- The more often an experiment can be repeated with the same results, in different places and by different people, the more sure scientists become about the reliability of their conclusions.
- Scientists look for a large amount of supporting evidence before they accept a hypothesis.

Communicating Results

- Scientists publish their results, sometimes in scientific articles, to share what they have learned with other scientists.
- Scientific articles include:

The Correlation Method

• When the use of experiments to answer questions is impossible or unethical, scientists test predictions by examining correlations.

• _

_____ is the linear dependence between two variables.

The Correlation Method

- An example is the relative width of a ring on a tree trunk is a good indicator of the amount of rainfall the tree received in a given year.
- Trees produce wide rings in rainy years and narrow rings in dry years.
- This method was used to help scientists investigate why the settlers at Roanake Island all died and why many died at the Jamestown Colony.

The Correlation Method

- Although correlation studies are useful, they do not necessarily prove cause-and-effect relationships between two variables.
- Scientists become more sure about their conclusions only if they find the same correlation in different places and as they continue to eliminate other possible explanations.

Scientific Habits of Mind

- Good scientists tend to share several key habits of mind, or ways of approaching and thinking about things.
- The first habit of mind is ______. Good scientists are endlessly curious which drives them to observe and experiment.
- The second habit of mind is ______. This means that good scientists do not believe everything that they are told.

Scientific Habits of Mind

- The third habit of mind is ______. Good scientists keep an open mind to how the world works.
- Another habit of mind is ______. A good scientist is willing to

recognize the results of an experiment even though it may mean that his or her hypothesis was wrong.

Scientific Habits of Mind

- Lastly, good scientists share ____
- They are not only open to new ideas, but also able to conceive new ideas themselves.
- They have the ability to see patterns where others do not or can imagine things that others cannot.
- This allows good scientists to expand the boundaries we know.