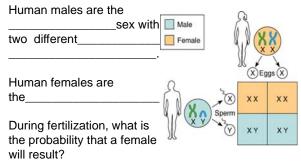
Genetics - Mendelian Exceptions Multiple Alleles and Sex-linked Genes

Chapter 14 Section 2

Objectives: Students will

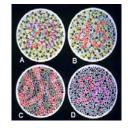
- A) Identify the genotypes of males compared to females
- B) Define sex-linked traits
- C) Complete punnett squares for sex-linked traits
- D) Predict offspring outcomes of multiple allele crosses
- E) Read and predict genetic outcomes from pedigrees

Obj. B) Define sex-linked traits 1. X- Linked inheritance

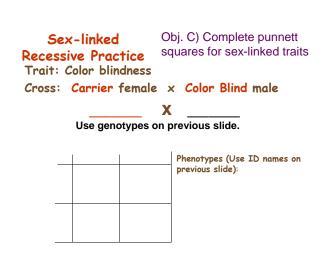

Certain sex-linked genes are ______ chromosomes and their alleles are ______ chromosomes.

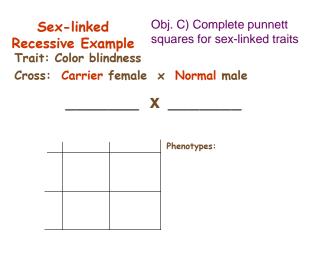
These genes are called ______ Their mode of inheritance is called _____

This pertains to the inheritance of traits which are controlled by genes located in the non-homologous part of _____


Examples:

A) Identify the genotypes of males compared to females.


Obj. C) Complete punnett squares for sexlinked traits


ХвХв	- Normal female
X ^B X ^b	⁻ Carrier female
X _p X _p	- Affected female
X ^B Y	- Normal Male
X ^b Y	- Affected male

Obj. B) Define sex-linked traits

Chromosomes carry Genes are loca on	ated
Genes on	
Autosomes -	
Sex chromsomes-	
However, certain genes present in the sex chromosomes	
The characters which are controlled by such ge are calleda transmission of such traits from one generat to next is called	nd

Obj. D) Predict offspring outcomes of multiple allele crosses

 Obj. B) Define sex-linked traits
 See page

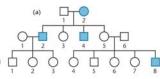
 X - Linked Recessive:
 345 for a list

 1. Affects __________of an affected male are affected, the

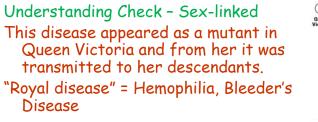
- trait ______in pedigrees. Exception to this pattern occurs in the rare instance when the ______ mates with a female _______, producing an affected _______ offspring. X - Linked Dominant:
- Affected _____ produces all affected
 _____ offspring and no affected
 _____ offspring
- 2. Approximately ______ the offspring of affected females are affected, regardless of their sex.

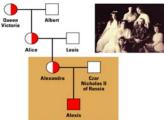
Practice: male Type O × female type AB X Genotype: Phenotype:

Obj. D) Predict offspring outcomes of multiple allele crosses


Obj. D) Predict offspring outcomes of multiple allele crosses **Multiple Alleles – Blood type**

Phenotype (blood type)	Genotype	Antigen Type	Antibodies made by body	Safe to Transfuse to	Safe to Transfuse From
A	I ^A I ^A or I ^A i	A	В	A, AB	Α, Ο
В	I ^B I ^B Or I ^B i	В	A	B, AB	В, О
AB	I^IB	A and B	None	AB	А, В, АВ, О
0	ii	None	A and B	А, В, АВ, О	0


Obj. E) Read and predict genetic outcomes from pedigrees


Always read the legend

Square = Male Circle = Female Shaded = color blind No shade = normal vision

- 1. What does a line between a male and female indicate?
- 2. What do the circles and squares beneath this mean?
- 3. What are the genotypes of the following individuals:
- A. Individual #8, Generation III
- B. Individual #3, Generation II
- C. Individual #2, Generation III

Хн Хн	- Normal female
X ^H X ^h	- Carrier female
Хн Х	- Normal Male
X ^h Y	- Affected male
X ^h X ^h	- Affected female

Χ

Cross a carrier female with a normal male. Identify the phenotypes.

Understanding Check – Multiple Alleles

Cross a heterozygous type B blood type with a AB blood type

Phenotype Percentages:

